Plant Disease Detection Using Deep Learning
نویسندگان
چکیده
Agriculture is extremely important in human life. Almost 60% of the population engaged some kind agriculture, either directly or indirectly. There are no technologies traditional system to detect diseases various crops an agricultural environment, which why farmers not interested increasing their productivity day by day. Crop have impact on growth respective species, so early detection critical. Many Machine Learning (ML) models been used and classify crop diseases, but with recent advances a subset ML, Deep (DL), this area research appears lot promise terms improved accuracy. The proposed method uses convolutional neural network Neural Network identify recognise disease symptoms effectively accurately. Furthermore, multiple efficiency metrics assess these strategies. This article offers thorough description DL that visualise diseases. several gaps identified from greater transparency for detecting plants can be obtained, even before occur. methodology aims develop convolution network-based strategy plant leaf disease.
منابع مشابه
Using Deep Learning for Image-Based Plant Disease Detection
Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,3...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملAutomatic Image-Based Plant Disease Severity Estimation Using Deep Learning
Automatic and accurate estimation of disease severity is essential for food security, disease management, and yield loss prediction. Deep learning, the latest breakthrough in computer vision, is promising for fine-grained disease severity classification, as the method avoids the labor-intensive feature engineering and threshold-based segmentation. Using the apple black rot images in the PlantVi...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملChord Detection Using Deep Learning
In this paper, we utilize deep learning to learn high-level features for audio chord detection. The learned features, obtained by a deep network in bottleneck architecture, give promising results and outperform state-of-the-art systems. We present and evaluate the results for various methods and configurations, including input pre-processing, a bottleneck architecture, and SVMs vs. HMMs for cho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Research Journal on Advanced Science Hub
سال: 2021
ISSN: ['2582-4376']
DOI: https://doi.org/10.47392/irjash.2021.057